z-logo
open-access-imgOpen Access
SEED PRIMING AND EXOGENOUS APPLICATION OF SALICYLIC ACID ENHANCE GROWTH AND PRODUCTIVITY OF OKRA (Abelmoschus esculentus L.) BY REGULATING PHOTOSYNTHETIC ATTRIBUTES
Author(s) -
Mohammad Saidur Rhaman,
Farjana Rauf,
Shaila Shermin Tania,
Karim Karim,
Ashaduzzaman Sagar,
Arif Hasan Khan Robin,
Arafat Abdel Hamed Abdel Latef,
Yoshiyuki Murata
Publication year - 2021
Publication title -
journal of experimental biology and agricultural sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.108
H-Index - 2
ISSN - 2320-8694
DOI - 10.18006/2021.9(6).759.769
Subject(s) - abelmoschus , germination , salicylic acid , seedling , chlorophyll , photosynthesis , shoot , horticulture , biology , transpiration , priming (agriculture) , stomatal conductance , water use efficiency , chlorophyll b , agronomy , botany , genetics
Low and uneven germination is a serious problem for the successful production of okra seedlings. Priming of seeds as well as supplementation of different plant growth regulators exhibited better response in successful seedling production which eventually results in higher yield. Therefore, the present study was conducted to evaluate the effects of seed priming and exogenous application of salicylic acid (SA) on okra seed germination and plant development. The okra seeds were primed by 1 mM and 2 mM of SA for 60 minutes whereas the seeds were washed several times with distilled water for the control treatment. Similar doses of SA have been exogenously sprayed to the 12 days okra seedlings for 4 days. The results of the study revealed that seed priming with SA enhanced germination percentage (GP), increased coleoptile length and weight, shoot and root length, and seed vigor index (SVI). Similarly, exogenous application of 1 mM SA increased relative water content (RWC), contents of chlorophyll a, chlorophyll b, total chlorophyll while a higher dose of SA (2 mM) degraded the leaf pigments. Supplementation of SA altered photosynthetic attributes, net photosynthetic (Pn) and transpiration rate (Tr), stomatal conductance (Gs), and water use efficiency (WUE). Moreover, SA treatment reduced the time duration of flower bud initiation and days to first flowering and enhanced the yield per plant. The results of this study indicated that seed priming and exogenous application of SA enhanced germination and okra productivity by regulating RWC and photosynthetic attributes where 1 mM SA is more effective compared to 2 mM SA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here