
PRODUCTION OF INDIVIDUALISED MULTI-MATERIAL COMPONENTS USING A ROBOT-BASED PROCESS CHAIN
Author(s) -
Max Albergt,
Marlón David,
Marcel Droß,
Ann-Kathrin Reichler,
HansWerner Hoffmeister,
Klaus Droeder
Publication year - 2021
Publication title -
mm science journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.195
H-Index - 10
eISSN - 1805-0476
pISSN - 1803-1269
DOI - 10.17973/mmsj.2021_11_2021143
Subject(s) - robot , modular design , process engineering , process (computing) , interlocking , materials science , metalworking , production (economics) , thermoplastic , manufacturing engineering , mechanical engineering , computer science , engineering , composite material , artificial intelligence , economics , macroeconomics , operating system
The production of individual work pieces in small to medium batch sizes requires an adaptation of the manufacturing strategy. Particularly, the manufacturing of multi-material components out of metal and plastic is characterized by high production costs as well as high production times. To resolve this challenge, a new, modular process chain for the production of these structures in a single manufacturing cell was developed. In this cell, a robot manufactures multi-material components with multiple end-effectors in several successive process steps. In the first step, interlocking structures are manufactured on a metal part by a surface structuring tool. Afterwards, an extruder is used to add a thermoplastic onto the structured metal part. Due to mechanical interlocking effects, the applied thermoplastic shows improved adhesion behavior. A study was conducted to analyze the achievable joint strength of the additive material application onto the structured metal samples. Investigations to determine the achievable manufacturing quality of a robot guided milling process for multi-material parts have been carried out. A recently developed suction hood is used to capture the metal and plastic chips. In this paper, the results regarding the efficiency of the individual end-effectors, including the extraction hood, are presented and it is demonstrated how they interact within the robot-based process chain.