z-logo
open-access-imgOpen Access
Aplikasi NIRS dan Principal Component Analysis (PCA) untuk Mendeteksi Daerah Asal Biji Kopi Arabika (Coffea arabica)
Author(s) -
Syahrul Ramadhan,
Agus Arip Munawar,
Diswandi Nurba
Publication year - 2016
Publication title -
jurnal ilmiah mahasiswa pertanian
Language(s) - English
Resource type - Journals
eISSN - 2615-2878
pISSN - 2614-6053
DOI - 10.17969/jimfp.v1i1.1182
Subject(s) - principal component analysis , forestry , coffea arabica , mathematics , biology , horticulture , botany , geography , statistics
Abstrak. Kopi merupakan spesies tanaman berbentuk pohon yang termasuk dalam famili Rubiaceae dan genus Coffea, tumbuh tegak, bercabang dan bila dibiarkan dapat tumbuh mencapai tinggi 12 meter. Pendeteksian mutu pangan yang cepat dan efisien dapat diwujudkan melalui pengembangan teknologi Near Infrared Reflectance Spectroscopy (NIRS). Sebanyak 54 sampel biji kopi diambil dari 6 Provinsi yang berbeda, yaitu: Aceh, Bali, Bengkulu, Nusa Tenggara Barat, Jawa Barat dan Jawa Timur. Pengamatan meliputi Principal Component Analysis (PCA) sebagai metode klasifikasi dan Pretreatment Multiplicative Scatter Correction (MSC) sebagai metode koreksi spektrum. Hasil pengujian menunjukkan bahwa PCA hanya mampu mengklasifikasikan biji kopi dari Provinsi Aceh dan Provinsi Jawa Timur, sedangkan dengan penambahan Pretreatment MSC mampu mengklasifikasikan biji kopi dari Provinsi Aceh dan Provinsi Bali dengan tingkat keberhasilan 100%.Abstract. Coffee is belong to family Rubiaceae and the genus Coffea, grow upright, branched, and can grow up to 12 meters high. The detection of food quality quickly and efficiently can be realized through the development of Near Infrared Reflectance Spectroscopy (NIRS) technology. A total of 54 Coffee bean samples were taken from 6 different province, namely: Aceh, Bali, Bengkulu, West Nusa Tenggara, West Java and East Java. Data analysis included Principal Component Analysis (PCA) were used to classify coffee based on geographic origin. Multiplicative Scatter Correction (MSC) method was used as spectra correction. The results shows that PCA is able to classify coffee beans from the Aceh and East Java province, while the addition of MSC Pretreatment able to classify the coffee beans from the province of Aceh and Bali province with 100% success rate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here