
A Protective dsRNA is Crucial for Optimum RNAi Gene Silencing in Chilo partellus
Author(s) -
Olawale Samuel Adeyinka
Publication year - 2021
Publication title -
international journal of agriculture and biology/international journal of agriculture and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.271
H-Index - 39
eISSN - 1814-9596
pISSN - 1560-8530
DOI - 10.17957/ijab/15.1785
Subject(s) - gene knockdown , rna interference , biology , rna silencing , gene silencing , gene , gene expression , small interfering rna , microbiology and biotechnology , rna , genetics
RNAi technology is currently employed as an alternate control measure for agricultural pests. However, the variability of RNAi efficiency in insect pests limits the extensive usage of this technology and demands identifying the best target gene for effective RNAi. Four different bacterially-expressed dsRNA and purified dsRNAs coated on artificial diet were fed to the larvae. The transcripts expression was analyzed at 5 days and 15 days post-exposure to various dsRNAs. In the larvae fed on bacterially-expressed dsRNA, knockdown percentages were 80 and 57% knockdown in Acetylcholinesterase transcript, 40 and 60% gene knockdown in Arginine kinase, 74 and 73% knockdown in Chymotrypsin, and 80 and 20% reduction in V-ATPase transcript expression. Overall, the mRNA knockdown percentages in the targeted genes were more pronounced at 5 days of exposure to bacterially-expressed crude dsRNA than 15 days of exposure. However, most purified dsRNAs rarely induce any significant knockdown except dsARG, which reduced the arginine kinase transcript by 40%. Our findings suggest that for optimum RNAi in C. partellus, the dsRNA must be protected from direct access with nucleases. © 2021 Friends Science Publishers