z-logo
open-access-imgOpen Access
Characterization of Genes Involved in γ-Aminobutyric Acid Metabolic Pathways Response to Metabolites Accumulation in Embryos during Barley Germination
Author(s) -
Mengyuan Jin
Publication year - 2021
Publication title -
international journal of agriculture and biology/international journal of agriculture and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.271
H-Index - 39
eISSN - 1814-9596
pISSN - 1560-8530
DOI - 10.17957/ijab/15.1730
Subject(s) - biology , glutamate decarboxylase , gaba transaminase , germination , gene expression , gene , biochemistry , metabolic pathway , gamma aminobutyric acid , aminobutyric acid , embryo , metabolite , enzyme , microbiology and biotechnology , botany , receptor
To reveal the key enzyme genes involved in γ-aminobutyric acid (GABA) metabolic pathways response to elevated metabolite storage in embryos during barley germination, this study investigated the GABA content, cloned GABA metabolic pathway genes and analyzed their expression levels, respectively. In barley embryos, GABA content continued to rise during the soaking process and then decreased after the germination. Three genes including glutamic acid decarboxylase (GAD), GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH) involved in the GABA pathway were cloned and characterized from the barley embryos, respectively. Before the germination, the expression of GAD gene was up-regulated, while GABA-T gene expression was down-regulated. After the germination, GAD gene expression was lowered, but GABA-T gene expression was rapidly increased. The SSADH gene expression remained stable after soaking of 4 h, and then down-regulated. There is evidence that the high GABA content in germinating barley seeds is parallel with the upregulation of the GAD gene, and down-regulation of GABA-T gene. These results indicate that the expression level of the genes involved in GABA pathway is a crucial factor in GABA accumulation during soaking and germination. This study is beneficial for the development of GABA-rich barley products by germination. © 2021 Friends Science Publishers

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here