
Marigold (Tagete erecta): An Effective Meloidogyne incognita Trap Plant
Author(s) -
Weihang Wu
Publication year - 2021
Publication title -
international journal of agriculture and biology/international journal of agriculture and biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.271
H-Index - 39
eISSN - 1814-9596
pISSN - 1560-8530
DOI - 10.17957/ijab/15.1666
Subject(s) - biology , tagetes , meloidogyne incognita , root knot nematode , trap crop , nematode , biological pest control , agronomy , terra incognita , pest analysis , botany , ecology
Root-knot nematodes (Meloidogyne spp.) are soil-borne pathogens that can cause severe damage to agricultural production. The most common approaches to prevent root-knot nematode infections are based on crop rotation with non-host plants, use of chemical insecticides, biological control methods, and use of nematode-antagonistic or trap plants. Marigolds (Tagetes erecta) are used as nematode-killing plants, but there is controversy over the mechanism through which they control root-knot nematodes. This study confirmed that marigold root-exudates are lethal to root-knot nematodes, illustrated that marigolds act as trap plants for root-knot nematodes when planted close to nematode host plants such as tomato. We investigated the rates of infection and development of nematode larvae injected into the marigold root system to evaluate whether marigolds could act as a non-host plant for root-knot nematodes. We found that aqueous solutions of marigold root-exudates showed strong lethal and inhibitory effects on sec-stage juveniles and eggs of root-knot nematodes. Marigold roots secreted substances that attracted nematodes from the surrounding environment. Furthermore, marigold root cells contained substances that had a strong inhibitory effect on the development of root-knot nematodes, resulting in diapause in nematodes, and inhibition of further infection. Herein we report a preliminary exploration of the antagonistic mechanism in marigolds for controlling the growth and development of root-knot nematodes. Our research provides basis for promoting the use of marigold for the control of nematodes as an important part of sustainable cropping strategies that rely on biological pest control. © 2021 Friends Science Publishers