
The integral method of species synanthropic properties assessment
Author(s) -
Lyubov Valeryevna Fedorova,
Galina Alexandrovna Kupatadze,
Natalya Gennadievna Kuranova,
Vladimir Pavlovich Viktorov,
Valentina Gennadievna Ezhkova
Publication year - 2018
Publication title -
samarskij naučnyj vestnik
Language(s) - English
Resource type - Journals
eISSN - 2782-3016
pISSN - 2309-4370
DOI - 10.17816/snv201874122
Subject(s) - ecotope , flora (microbiology) , obligate , facultative , ecology , abundance (ecology) , herbaceous plant , biology , habitat , landscape ecology , genetics , bacteria
The paper discusses different approaches of species activity determination in phytocenotic and floristic studies. The authors propose a formula of representation and plasticity for estimating the properties of the species taking into account the occurrence and abundance of the species in ecotopes with different anthropogenic transformation. The study contains a comprehensive analysis of sinanthropy properties of 32 herbaceous plants species related to the flora of Orekhovo-Zuyevo in the 19 most common types of ecotopes of different categories of anthropogenic disturbance. All species form 6 groups according to the ecotopic and sinanthropic plasticity. The relationship between the ecotopic and sinanthropic plasticity is discussed. It is shown that the synanthropic properties of species depend on the plastisity, but do not completely coincide with it. Native species with a high plasticity index successfully master a variety of ecotopes, including highly transformed ones and form a facultative-synanthropic (FS) component of the local flora. This species complex in boarders of local flora is constant and independent of the degree of the environment transformation. Adventive species, even with a high plasticity, penetrate the undisturbed ecotopes with difficulty and for the most part remain obligate sinanthropes (OS). The lability of the borders between non sinanthropic (NS) and relatively sinanthropic (RS) groups lead to the transition from one species group to the other.