Open Access
WILD-GROWING SPECIES OF MINT AS CARRIERS OF GENES OF RESISTANCE TO ADVERSE ENVIRONMENTAL FACTORS
Author(s) -
Liudmila Alexandrovna Bygayenko
Publication year - 2015
Publication title -
samarskij naučnyj vestnik
Language(s) - English
Resource type - Journals
eISSN - 2782-3016
pISSN - 2309-4370
DOI - 10.17816/snv20152107
Subject(s) - biology , interspecific competition , hybrid , rust (programming language) , botany , interspecific hybridization , horticulture , computer science , programming language
It is shown wild-growing types of mint can be carriers of genes of frost resistance and resistance to rust which is caused by a mushroom of Puccinia menthae Pers. The method of interspecific hybridization with use of the cultivated types - Mentha piperita and Mentha canadensis L., and also wild-growing types - Mentha aquatica L., Mentha spicata L. and Mentha longifolia (L.) Nathh is perspective for creation of steady grades. Sustainability donors to a rust - M. canadensis K60 (4p) and K6 M. aquatica which in a wide range of combinations provide resistance to a rust of bulk of hybrid posterity have been revealed. Interspecific hybridization at mint at the corresponding selection of parental couples is a valuable method of creation of highly productive hybrids, steady against a rust (Puccinia menthae Pers) that has been shown.. Monogenic nature of inheritance of an immunity to Puccinia menthae Pers is confirmed and the genotype of the parental forms M. canadensis, M.aquatica, M.spicata is determined by S gene, Existence of prepotent (S) or recessive alleles (s) in homozygous (SS, SSSS, ss) or a heterozygotic state (Ss, SSss) expressiveness of this sign in hybrid posterity of F1 defines. It is established that in F1 of interspecific hybrids from crossing of an allopolyploid form of a pepper mint with frost resistance plants of M. spicata it is frost resistance sign inherited generally on intermediate type, however to 30 % of plants comes nearer on this sign to the frost-resistant parent. It indicates possibility of receiving interspecific hybrids with increased frost resistance at the specified type of crossings. For creation of hybrids with the increased frost resistance use in interspecific hybridization of the frost-resistant forms M. spicata K42, K65, the S1 and S2 lines received from self-pollination of K65 (2.8.I4, 9.37.34), and also a polyploidy of M. canadensis of K60 is perspective. The gene pool of wild-growing types and forms of mint in which the genotypes possessing genes of resistance to rust and the lowered temperatures are presented is created.