
Absorption of gasoline vapors in automobile adsorber with a carbon filter
Author(s) -
V. A Khodyakov,
V. A Rachkova,
V. V Bernatskiy,
S. V. Khlopkov,
R. Kh Abu-Nidzhim
Publication year - 2017
Publication title -
izvestiâ mgtu "mami"
Language(s) - English
Resource type - Journals
eISSN - 2949-1428
pISSN - 2074-0530
DOI - 10.17816/2074-0530-66862
Subject(s) - gasoline , activated carbon , coal , adsorption , chemical engineering , chemistry , absorption (acoustics) , organic chemistry , carbon fibers , oxygenate , waste management , pulp and paper industry , materials science , composite material , catalysis , composite number , engineering
Modification of the component composition of gasoline, associated with the use of spirits and ethers (oxygenates) in modern fuels, as well as an increased content of combustible aromatic hydrocarbons may influence the dynamic activity of the coal filter. Therefore, the absorption of gasoline vapors with activated carbon (a coal filter) has been studied. The subjects of the study were samples of gasoline RON 95, RON 98, purchased at different times at gas stations in Russia and Spain. To carry out the tests a carbon filter (activated carbon) of the adsorber of the CITROEN C4 was used. Before filling the sorbent in a dynamic tube, it was regenerated, consisted of heating the coal to temperatures of 250 ... 3000С and forcing it to shake through the container with air material. Experiments on the absorption of gasoline vapors were carried out on a plant consisting of a rotameter, a Drexler bottle, a pressure stabilizer, and a dynamic tube. It has been established that, unlike other samples, two fuel samples have certain features that manifest themselves, in particular, in the values of the boiling temperature, in the value of the octane number, in the acidity parameters and in the remainder in the flask. Activated carbon has a higher adsorption and retention capacity with respect to the components of these gasolines. It is shown that this ability is a reflection of the increased content in the fuel of organic compounds with a higher molecular mass. Such substances include aromatic hydrocarbons and series of compounds containing polar substituents, for example methyl tert-butyl ether.