
Determination of the time and the path of acceleration of a vehicle equipped with a gearbox without switching-off of the power flow
Author(s) -
A. V Ryabev,
A. P Parfenov
Publication year - 2018
Publication title -
izvestiâ mgtu "mami"
Language(s) - English
Resource type - Journals
eISSN - 2949-1428
pISSN - 2074-0530
DOI - 10.17816/2074-0530-66855
Subject(s) - acceleration , power (physics) , traction (geology) , path (computing) , computer science , power flow , automotive engineering , simulation , flow (mathematics) , control theory (sociology) , engineering , mathematics , electric power system , mechanical engineering , artificial intelligence , physics , geometry , control (management) , classical mechanics , quantum mechanics , programming language
Gearbox with gears switching without switching-off of the power flow (GWSPF) are known to spread on agricultural tractors, which have a large number of gears to support various technological processes. However, the expediency of using them on high-speed crawler machines (HSCM), which has the limited number of gears, is not obvious due to greater complexity and cost, as well as additional power losses compared to the widely used simpler mechanical gearboxes. For HSCM, as well as vehicles with a number of gears of more than five, the advantages of shifting without breaking the power flow can outweigh their disadvantages mentioned above. For army crawler machines used in military conditions the time and the path of dispersal can be decisive. The paper gives a comparative evaluation of HSCM equipped with a five-speed mechanical synchronized gearbox and GWSPF, which showed the advantages of gear shift without breaking the power flow in reducing the time and acceleration path by 1.3 and 1.2 times, respectively. To perform the calculations, a technique and algorithm for calculating the parameters of the acceleration of the machine was developed in comparison with the approximate method of graph-analytic integration of professor N. Yakovlev. The exact calculation technique is based on solving a differential equation relating the acceleration to the speeding up parameters of the crawler machines under the initial conditions corresponding to the beginning of its motion. The methodology and calculation algorithm can also be used to determine the traction-speed and fuel-economic qualities of other vehicles, including automobiles.