z-logo
open-access-imgOpen Access
Development of vehicle undercarriage with roadster body using topological optimization
Author(s) -
Anatolii Basov,
A. A. Smirnov
Publication year - 2018
Publication title -
izvestiâ mgtu "mami"
Language(s) - English
Resource type - Journals
eISSN - 2949-1428
pISSN - 2074-0530
DOI - 10.17816/2074-0530-66813
Subject(s) - process (computing) , key (lock) , power (physics) , computer science , automation , finite element method , topology (electrical circuits) , automotive engineering , engineering , simulation , control engineering , mechanical engineering , electrical engineering , structural engineering , physics , computer security , quantum mechanics , operating system
Nowadays the key task of designer is to reduce the mass of the automobile. This requirement is dictated by increasing demands for efficiency and dynamics of vehicle. On the other hand, the constantly increasing requirements for comfort and safety of the automobile, as well as the degree of automation of the driver's work lead to the use of a large number of additional systems, which increases the weight of the vehicle. In addition, the use of alternative power plants leads to the appearance of non-standard layout schemes. The number of manufactured models is increasing to satisfy all consumer groups. Simultaneously, the time period for R&D is reduced. In these conditions, we consider that it is effective to use methods of topological optimization of the undercarriage at the stage of the choice of the power circuit and the concept of the undercarriage. The article deals with the process of topological optimization of the vehicle undercarriage with roadster body. The car was developed at the Bauman MSTU. The process of developing of vehicle layout and design of driver position using a virtual manikin are shown. The process of preparing the design space for a computational model for optimizing is considered. A description of the finite element model for optimizing the undercarriage is given. There are considered two groups of calculation cases: operational and emergency. The optimization problem is formulated, the objective function and constraints are given. When performing calculations, the OptiStruct software was used. The results of optimization of the undercarriage for several loading regimes are presented. The analysis of the obtained topology is carried out.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here