
Comparative evaluation of the effectiveness of the vibration protection of the active suspension system with PID control
Author(s) -
Victor Kuzmin,
З. А. Годжаев
Publication year - 2018
Publication title -
traktory i selʹhozmašiny
Language(s) - English
Resource type - Journals
eISSN - 2782-425X
pISSN - 0321-4443
DOI - 10.17816/0321-4443-66407
Subject(s) - tractor , pid controller , control theory (sociology) , suspension (topology) , vibration , matlab , engineering , frequency response , computer science , automotive engineering , control engineering , mathematics , control (management) , physics , acoustics , temperature control , artificial intelligence , homotopy , pure mathematics , operating system , electrical engineering
The pneumatic suspension is used to absorb vibration and provide comfortable labor conditions for transportation vehicle drivers. The cause of increased vibration of the tractor, often, are incorrectly matched elastic-damping characteristics of the cushions of the active suspension system, which can not cope (or cope extremely ineffectively) with fluctuations coming from the external background. Since the realization of an experiment for the dynamic analysis of pneumatic suspension takes a long time, the mathematical models of the vehicle suspension system are used to obtain the response parameters of the pneumatic suspension. In the given article the comparative characteristic of spring’s systems with a cylindrical spring and a linear pneumatic spring as a suspension system is given. To carry out the simulation, the Matlab/Simulink software complex was used, in which, based on the previously obtained values of equivalent rigidity, a simulation of the tractor was built. Since the tractor in this model is considered as a linear system, its spectral function was calculated from the spectrum of the input parameters of the path unevenness and the frequency response of the tractor. These parameters were used to analyze the vibration response of the suspension system to assess the effectiveness of the system and, as a result, assessment of the operator comfort. The algorithm of the proportional integral differentiating (PID) regulation of the suspension system was implemented depending on their output parameters as well. The comparative study shows how the linear model of the pneumatic suspension system controlled by a PID-regulator is able to suppress fluctuations arising from road roughness and whether it is effective than a passive suspension system for a vehicle with a coil spring. The criterion of efficiency in this work was the indicator of the tractor's displacement height.