Open Access
Increase of durability and wear resistance of internal combustion engine parts by changing their design features
Author(s) -
V. A Kochenov,
Коченов В. А,
K.E. Grunin,
Грунин К. Е
Publication year - 2017
Publication title -
traktory i selʹhozmašiny
Language(s) - English
Resource type - Journals
eISSN - 2782-425X
pISSN - 0321-4443
DOI - 10.17816/0321-4443-66344
Subject(s) - durability , piston (optics) , mechanical engineering , wear resistance , piston ring , internal combustion engine , cylinder , crank , materials science , engineering , composite material , physics , ring (chemistry) , chemistry , organic chemistry , wavefront , optics
Based on the patterns of wear, change and redistribution of loads during operation, design solutions have been developed to improve the durability and wear resistance of tribo-joints of the crank mechanism and the cylinder-piston group of the internal combustion engine. With a variety and dispersion of factors determining durability and wear resistance, the change in wear and wear intension during the operation has a pronounced regular character. Theoretical coupling does not have a run-in period - optimal, i.e. the obtained geometric parameters of the friction pair are created during the machining of friction surfaces of the parts. Due to the lack of a run-in period, the theoretical resource - produced with the expected parameters, the more effective the actual unattended interface. As a rule, friction surfaces of machine parts have a pronounced, natural, regular wear. Deviations from natural wear (unnatural wear) are caused by: severe working conditions without violating the rules of operation; violation of technical conditions -defective products in manufacture and in operation; imperfect design due to insufficient knowledge of the problem and mistakenly defined technical conditions for production and operation. The efficiency of restoring the efficiency of the cylinder-piston group by replacing the rings without replacement of the cylinders is investigated on a 4-stroke, 4-cylinder engine ZMZ-402. In two cylinders pistons and rings change, in the other two only rings. In the cylinders with old pistons, the running-in proceeds more intensively. At the end of cold running-in, compression in cylinders with old pistons is higher than in cylinders with new pistons. Efficiency is achieved due to a greater correspondence of the geometric parameters of tribo-conjugations with old pistons to its accumulated values. The analysis of field studies confirms the legitimacy of the hypothesis of the theoretical study.