
Forecasting the durability of hollow shafts and axles of agricultural machinery products
Author(s) -
В. Б. Дементьев,
Дементьев В. Б,
A. D Zasypkin,
Засыпкин А. Д
Publication year - 2017
Publication title -
traktory i selʹhozmašiny
Language(s) - English
Resource type - Journals
eISSN - 2782-425X
pISSN - 0321-4443
DOI - 10.17816/0321-4443-66304
Subject(s) - durability , axle , deformation (meteorology) , bending , compression (physics) , computer science , mechanical engineering , process engineering , structural engineering , engineering , materials science , composite material , database
The issues of increasing durability in the development of technologies for strengthening the critical parts of agricultural machinery products are considered. The conducted experiments and calculations show that the use of hollow axes, shafts and other hollow products gives a great technical and economic effect, reduces the consumption of metal, facilitates the weight of equipment and ensures its high performance. The technique of prediction of the durability of parts with thermomechanical processing and deformation by screw compression from hot-rolled especially thick-walled pipes is presented, their bench and operational tests have been carried out, showing that hardened hollow parts not only do not concede, and sometimes exceed continuous durability. Optimization of the processing of parts, taking into account the stated results of theoretical and experimental studies, makes it possible to increase their efficiency. Considering that it is necessary to deal with multifactorial dependencies, it is advisable to automate their solution. Algorithms and programs for computer technology have been developed for a number of technological processes, successfully used both for automating the design of technological processes and for automating production itself. With the use of thermomechanical processing and deformation by screw compression, a fivefold increase in durability with asymmetric sign-constant bending is achieved on some products (track fingers of caterpillar machines). Thus, it becomes evident that the use of hollow axes, shafts and other hollow parts in agricultural machinery construction is much more widespread than at present, given the very important property of these hollow parts, that they are less sensitive to stress concentration under cyclic loads, especially if hardening is performed by high-temperature thermomechanical processing. It is recommended to use this unique treatment of responsible and highly loaded machine parts for a wide range of applications.