
MATHEMATICAL MODEL OF A PNEUMATIC RELAXATION OF SEAT SUSPENSION WITH ENERGY RECUPERATION
Author(s) -
Mikhail Lyashenko,
В. В. Шеховцов,
А. И. Искалиев
Publication year - 2017
Publication title -
traktory i selʹhozmašiny
Language(s) - English
Resource type - Journals
eISSN - 2782-425X
pISSN - 0321-4443
DOI - 10.17816/0321-4443-66281
Subject(s) - suspension (topology) , matlab , vibration , shock absorber , control theory (sociology) , mechanical engineering , simulation , computer science , mechanics , engineering , physics , acoustics , mathematics , control (management) , artificial intelligence , homotopy , pure mathematics , operating system
Simulink MatLAB, амплитудно-частотная характеристика. The paper proposes a mechanism and an algorithm for controlling a single-bearing pneumatic relaxation suspension system with energy recovery of oscillations applied to the standard seat of operator of Sibeko traction vehicle. Experimental studies of the static characteristic of a pneumatic suspension of a standard seat with a nonlinear elastic-damping characteristic have been performed. A mathematical model of a pneumatic relaxation seat suspension with two additional volumes of air is created, between which is installed an air motor - recuperator, which is activated by the flow of air from one additional volume to another. As a result of computational studies using the XY Graph Simulink MatLAB block-tool, the working elastic-damping characteristic of the simulated suspension system was obtained. The mathematical model, created taking into account the main provisions of theoretical mechanics and gas dynamics, realizes the concept of control of a single-bearing suspension system with a non-linear elastic-damping characteristic and absorption of vibrational energy at the end of compression and rebound strokes with a change in the direction of movement of the sprung mass. Calculation studies were carried out in the Simulink MatLAB software package. The working capacity of the mechanism and method of control of a single-bearing suspension system, realizing the necessary characteristic, has been confirmed. For the preliminary evaluation of the vibration-protective properties of the seat, amplitude-frequency characteristics of the transmission coefficients of the nominal and proposed suspensions were constructed. The performed comparative analysis of the amplitude-frequency characteristics revealed a noticeable improvement in the vibration protection of the pneumatic relaxation system of suspension with energy recovery of oscillations in comparison with the nominal one both in the region of resonant disturbances and in the resonant region. Based on the results of the analysis, the main directions for further improving the vibroprotective properties of the proposed suspension system are outlined.