z-logo
open-access-imgOpen Access
A Novel Deep Learning Pipeline Architecture based on CNN to Detect Covid-19 in Chest X-ray Images
Author(s) -
Saqib Jamal Syed Putra Sumari
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i6.4804
Subject(s) - convolutional neural network , computer science , deep learning , artificial intelligence , covid-19 , pipeline (software) , artificial neural network , architecture , pattern recognition (psychology) , image (mathematics) , machine learning , medicine , infectious disease (medical specialty) , disease , pathology , geography , archaeology , programming language
Covid-19 is a severe public health problem worldwide. To date, it has spanned worldwide, with 24.6 million infected with 835,843 confirm the death. Covid-19 detection is indeed an important task and has to be done as quickly as possible so that treatment and monitoring can be carried out early. The current world standard RT-PCR screening for Covid-19 detection has to cope with the world population's great demand. There is a need to have an alternative way to cope with the demands. It has to be a quick and accurate detection procedure, such as using a chest x-ray for Covid-19 detection. This paper proposes a deep learning pipeline architecture called Gray Level Co-occurrence Matrix GLCM) with Convolutional Neural Network (CNN) for Covid-19 detection using chest X-ray image. The proposed method has two main diagnosis features, a quicker diagnosis, and a detailed diagnosis. The quicker diagnosis uses few GLCM features and a standard neural network (NN) algorithm to detect Covid-19 symptoms. It is a suitable method for rural areas where computing resources are minimal. The detailed diagnosis uses huge image pixel features and a deep convolutional neural network (CNN) algorithm to detect Covid-19 symptoms. It is a suitable method for places where computing resources are sufficient. The proposed work provides the highest classification performance, with 97.06% accuracy compared to other similar works.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here