
Distributed Deep Reinforcement Learning Computations for Routing in a Software-Defined Mobile Ad Hoc Network
Author(s) -
Omar S. Almolaa,
Manar Younis Kashmola
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i6.3378
Subject(s) - computer science , computer network , mobile ad hoc network , network packet , distributed computing , wireless ad hoc network , adaptive quality of service multi hop routing , throughput , reinforcement learning , flexibility (engineering) , optimized link state routing protocol , routing protocol , routing (electronic design automation) , wireless , artificial intelligence , telecommunications , statistics , mathematics
The need for reliable and flexible wireless networks has significantly increased in recent years, according to the growing reliance of an enormous number of devices on these networks to establish communications and access service. Mobile Ad-hoc Networks (MANETs) allow the wireless network to establish communications without the need for infrastructure by allowing the nodes to deliver each other’s packets to their destination. Such networks increased flexibility but require more-complex routing methods. In this study, we proposed a new routing method, based on Deep Reinforcement Learning (DRL), that distributes the computations in a Software Defined Network (SDN) controller and the nodes, so that, no redundant computations are executed in the nodes to save the limited resources available on these nodes. The proposed method has been able to significantly increase the lifetime of the network, while maintaining a high Packet Delivery Rate (PDR) and throughput. The results also show that the End-to-End delay of the proposed method is slightly larger than existing routing methods, according to the need for longer alternative routes to balance the loading among the nodes of the MANET.