z-logo
open-access-imgOpen Access
Roger 3450 Vs RF4 Martials - Based Frequency And Pattern Reconfigurable Rectangular Patch Slot Antennas For RFID Applications
Author(s) -
Salah Mohmad Alsadiq Aboghsesa
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i6.2432
Subject(s) - hfss , antenna (radio) , patch antenna , computer science , return loss , acoustics , microstrip antenna , electrical engineering , electronic engineering , telecommunications , physics , engineering
Rectangular Patch Slot Antennas RPSA are getting becoming more likable and popular for practice in wireless implementations such as RFID applications especially in the UHF band thanks to its low-profile structure. This kind of antenna is able to deliver large communication distances but this antenna coverage is very weak which is part of the main drawbacks of these antennas. In this paper, Rectangular Patch Slot Antenna RPSA with different slots has been designed and simulated to be suitable for RFID applications. Circular polarized CP antenna that has been designed to use feed structure with vertical ground encircling a radiating component. The feeding method to feed this antenna is coaxial probe. The paper will concentration on both substrate materials Roger 4350 and FR4 Glass-Epoxy material to model and simulate the designs. The other factor of the design is the patch antenna will cut at the four truncated corners to enhance the antenna gain which will affect considerably the operating frequency. This paper aims to show and find the best feed point area that has an exceptional antenna return loss (S11) and high gain. S11 describe the power reflected from the antenna, which is known as the reflection coefficient S11 must be ≤ -10dB. The design and simulation results of RPSA has been done by high frequency simulation system (HFSS 13.0).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here