z-logo
open-access-imgOpen Access
Deep Neural Networks Techniques using for Learning Automata Based Incremental Learning Method
Author(s) -
C. Swetha Reddy et.al
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i6.1268
Subject(s) - computer science , mnist database , artificial intelligence , artificial neural network , machine learning , deep learning , set (abstract data type) , class (philosophy) , training (meteorology) , training set , deep neural networks , physics , meteorology , programming language
Surprisingly comprehensive learning methods are implemented in many large learning machine data, such as visual recognition and visual language processing. Much of the success of advanced training in recent years is due to leadership training, which requires a set of information for specific tasks, before such training. However, in reality, selected tasks related to personal study are gradually accumulated over time as it is difficult to collect and submit training data manually. It provides a way to continue learning some information columns and examples of steps that are specific to the new class and called additional learning. In this post, we recommend the best machine training method for further training for deep neural networks. The basic idea is to learn a deep system with strong connections that can be "activated" or "turned off" at different stages. The approach you suggest allows you to reduce the distribution of old services as you learn new for example new training, which increases the effectiveness of training in the additional training phase. Experiments with MNIST and CIFAR-100 show that our approach can be implemented in other long-term phases in deep neuron models and achieve better results from zero-base training.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here