z-logo
open-access-imgOpen Access
Modeling Student’s Academic Performance During Covid-19 Based on Classification in Support Vector Machine
Author(s) -
Et. al. Nor Ain Maisarah Samsudin
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i5.2190
Subject(s) - support vector machine , kernel (algebra) , sigmoid function , polynomial kernel , radial basis function kernel , computer science , machine learning , artificial intelligence , point (geometry) , kernel method , mathematics , artificial neural network , geometry , combinatorics
This study proposed a statistical investigate the pattern of students’ academic performance before and after online learning due to the Movement Control Order (MCO) during pandemic outbreak and a modelling students’ academic performance based on classification in Support Vector Machine (SVM). Data sample were taken from undergraduate students of Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris (UPSI). Student’s Grade Point Average (GPA) were obtained to developed model of academic performances during Covid-19 outbreak. The prediction model was used to predict the academic performances of university students when online classes was conducted. The algorithm of Support Vector Machine (SVM) was used to develop a model of students’ academic performance in university. For the Support Vector Machine (SVM) algorithm, there are two important parameters which are C (misclassification tolerance parameter) and epsilon  need to identify before proceed the further analysis. The parameters was applied to four different types of kernel which is linear kernel, radial basis function kernel, polynomial kernel and sigmoid kernel and the result was found that the best accuracy achieved by SVM are 73.68% by using linear kernel and the worst accuracy obtained from a sigmoid kernel which is 67.99% with parameter of misclassification tolerance C is 128 and epsilon is 0.6.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here