
Mental Health Prediction Models Using Machine Learning in Higher Education Institution
Author(s) -
Sofianita Mutalib
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i5.2181
Subject(s) - mental health , anxiety , logistic regression , decision tree , naive bayes classifier , depression (economics) , support vector machine , machine learning , artificial neural network , computer science , psychology , artificial intelligence , clinical psychology , medical education , applied psychology , medicine , psychiatry , economics , macroeconomics
Today, mental health problem has become a grave concern in Malaysia. According to the National Health and Morbidity Survey (NHMS) 2017, one in five people in Malaysia suffers from depression, two in five from anxiety, and one in ten from stress. Higher education students are also at risk of being part of the affected community. The increased data size without proper management and analysis, and the lack of counsellors, are compounding the issue. Therefore, this paper presents on identifying factors in mental health problems among selected higher education students. This study aims to classify students into different categories of mental health problems, which are stress, depression, and anxiety, using machine learning algorithms. The data is collected from students in a higher education institute in Kuala Terengganu. The algorithms applied are Decision Tree, Neural Network, Support Vector Machine, Naïve Bayes, and logistic regression. The most accurate model for stress, depression, and anxiety is Decision Tree, Support Vector Machine, and Neural Network, respectively.