
Analysis of Dynamical Behavior for Epidemic Disease COVID-19 with Application
Author(s) -
Et. al. Dr. Maysoon M. Aziz
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i4.538
Subject(s) - closeness , dissipative system , chaotic , stability (learning theory) , disease , matlab , epidemic model , computer science , covid-19 , mathematics , chaos (operating system) , medicine , artificial intelligence , machine learning , infectious disease (medical specialty) , mathematical analysis , physics , population , environmental health , pathology , quantum mechanics , operating system , computer security
In this paper, we will use the differential equations of the SIR model as a non-linear system, by using the Runge-Kutta numerical method to calculate simulated values for known epidemiological diseases related to the time series including the epidemic disease COVID-19, to obtain hypothetical results and compare them with the dailyreal statisticals of the disease for counties of the world and to know the behavior of this disease through mathematical applications, in terms of stability as well as chaos in many applied methods. The simulated data was obtained by using Matlab programms, and compared between real data and simulated datd were well compatible and with a degree of closeness. we took the data for Italy as an application. The results shows that this disease is unstable, dissipative and chaotic, and the Kcorr of it equal (0.9621), ,also the power spectrum system was used as an indicator to clarify the chaos of the disease, these proves that it is a spread,outbreaks,chaotic and epidemic disease .