
AN EVALUATION OF SWINE FLU (INFLUENZA A H3N2V) VIRUS PREDICTION USING DATA MINING AND CONVENTIONAL NEURAL NETWORK TECHNIQUES
Author(s) -
Pilla Srinivas
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i4.1214
Subject(s) - computer science , data mining , naive bayes classifier , artificial neural network , classifier (uml) , artificial intelligence , machine learning , support vector machine
Nowadays, The health care commercial enterprise collects huge amounts of healthcare data which, unfortunately, are not “mined” to discover hidden information. Data mining plays a significant role in predicting diseases. The database report of medical patient is not more efficient, currently we made an Endeavour to detect the most widely spread disease in all over the world named Swine flu. Swine flu is a respiratory disease which has Numeral number of tests must be requisite from the patient for detecting a disease. Advanced data mining techniques gives us help to remedy this situation. In this work we describes about a prototype using data mining techniques, namely Naive Bayes Classifier. The Data mining is an emerging research trend which helps in finding accurate solutions in many fields. This paper highlights the various data mining technique and Convolution Neural Network used for predicting swine flu diseases.