z-logo
open-access-imgOpen Access
Enhancing the Accuracy of Multimodal Biometric Systems
Author(s) -
Meena Tiwari et. al.
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i3.2063
Subject(s) - biometrics , computer science , field (mathematics) , iris recognition , face (sociological concept) , artificial intelligence , machine learning , data science , computer security , mathematics , social science , sociology , pure mathematics
: Biometric acknowledgment frameworks have progressed altogether in the most recent decade and their utilization in explicit applications will increment sooner rather than later. The capacity to direct important correlations and evaluations will be urgent to fruitful organization and expanding biometric selection. Indeed, even the best methodology and unimodal biometric frameworks couldn't completely address the issue of exactness and execution as far as their bogus acknowledge rate (FAR) and bogus oddball rate (FRR). In spite of the fact that multimodal biometric frameworks had the option to moderate a portion of the restrictions experienced in unimodal biometric frameworks, like non-all inclusiveness, uniqueness, non-adequacy, loud sensor information, parody assaults, and execution, the issue of low exactness actually continues. In this paper, we survey research papers zeroed in on the precision improvement in data combination of face and finger impression biometric acknowledgment frameworks, decide the primary highlights of the chose techniques, and afterward call attention to their benefits and inadequacies. We propose a novel methodology in relieving the issue of exactness and execution of data combination of multimodal biometric frameworks. This methodology utilizes multilayer perceptron neural organizations in preparing and testing of the organization while additionally proposing the utilization of the most well-known utilized unique mark in biometric field.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here