z-logo
open-access-imgOpen Access
A Machine Learning-based Damage Prediction Techniques for Structural Health Monitoring
Author(s) -
M Vishnu Vardhana Rao
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i2.2401
Subject(s) - support vector machine , computer science , artificial neural network , structural health monitoring , artificial intelligence , machine learning , data set , rough set , set (abstract data type) , feature (linguistics) , vibration , data mining , engineering , structural engineering , linguistics , philosophy , physics , quantum mechanics , programming language
Nowadays, the Structural Building Health Damage Monitoring System (SBHDMS) is a crucial technology for predicting the civil building structures' health. SBHDMS contains abnormal changes in the buildings in terms of damage levels. Natural Disasters like Earthquakes, Floods, and cyclones affect the unusual changes in the buildings. If the building undergoes any natural disaster, the sensors capture the vibration data or change the buildings' structure. Due to the vibration data, these unusual changes can be analyzed. Here sensors or Machine Learning based Building Damage Prediction (MLBDP) are used for capturing and collecting the vibration data. This paper proposes a Novel Rough Set based Artificial Neural Network with Support Vector Machine (RAS) metaheuristic method. RAS method is used to predict the damaged building's vibration data levels captured by the sensors. For the feature reduction subset, we use one of the essential pre-processing method called the Rough set theory (RST) strategy. RAS has two contributions. The first one is the Support Vector Machine (SVM) classification method used for identifying the structures of the buildings. The artificial Neural Network (ANN) method used to predict the buildings' damage levels is the second contribution. The proposed method (RAS) is accurately predicting the conditions of the construction building structure and predicting the damage levels, without human intervention. Comparing the results states that the proposed method accuracy is better than SVM's classification methods, ANN. The prediction analysis depicts that the RAS method can effectively detect the damage levels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here