
Higher-Order Phase-Space Reconstruction for Detection of Epileptic Electroencephalogram
Author(s) -
Nazia Parveen
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i2.2202
Subject(s) - c4.5 algorithm , electroencephalography , pattern recognition (psychology) , computer science , artificial intelligence , euclidean distance , feature vector , random forest , epileptic seizure , euclidean space , classifier (uml) , speech recognition , mathematics , support vector machine , neuroscience , psychology , naive bayes classifier , pure mathematics
In this paper, the authors propose a new technique for the classification of seizures, non-seizures, and seizure-free EEG signals based on non-linear trajectories of EEG signals. The EEG signals are decomposed using the EMD technique to obtain intrinsic mode functions (IMFs). The phase space of these IMFs is then reconstructed using a novel technique of higher-order dimensions (3D, 4D, 5D, 6D, 7D, 8D, 9D, and 10D). The existing techniques of seizure detection have deployed 2D & 3D phase–space reconstruction only. The Euclidean distance of all higher-order PSR is used as a feature to classify seizures, non-seizures, and seizure-free EEG signals. The performance of the proposed method is analyzed on the Bonn University database in which 7D reconstructed phase space classification accuracy of 99.9% has been achieved both using Random Forest classifier and J48 decision tree.