
A frame work for the detection and Diagnosis of Lung Tumors using Deep learning Methods
Author(s) -
et. al. P.Jagadeesh
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i2.2051
Subject(s) - computer science , convolutional neural network , artificial intelligence , pixel , frame (networking) , deep learning , segmentation , computer vision , lung , pattern recognition (psychology) , medicine , telecommunications
The detection of tumor pixels in lung images is complex task due to its low contrast property. Hence, this paper uses deep learning architectures for both the detection and diagnosis of lung tumors in Computer Tomography (CT) images. In this article, the tumors are detected in lung CT images using Convolutional Neural Networks (CNN) architecture with the help of data augmentation methods. This proposed CNN architecture classifies the lung images into two categories as tumor images and normal images. Then, the segmentation method is used to segment the tumor pixels in the lung CT images and the segmented tumor regions are classified into either mild or severe using proposed CNN architecture.