z-logo
open-access-imgOpen Access
Identification of Paddy Leaf Diseases using Evolutionary and Machine Learning Methods
Author(s) -
Nilam Patil
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i2.1503
Subject(s) - computer science , artificial intelligence , agriculture , identification (biology) , paddy field , machine learning , machine vision , agricultural engineering , feature extraction , image processing , pattern recognition (psychology) , image (mathematics) , agronomy , engineering , geography , botany , biology , archaeology
In the field of agriculture, especially paddy plants, there is a demand for research to classify the paddy diseases at early stages. This is feasible if there are automated systems that can assist the farmers to recognize the paddy diseases from the paddy leaf images of the plants. The recognition of agricultural plant diseases by utilizing the image-processing and machine learning techniques can certainly minimize the reliance on the farmers to protect the yield of paddy crops. In this paper, an attempt has been made to pre-process the images to prepare the feature-set for Classifiers and then feature extraction algorithms are used to extract the relevant features from the processed images. The feature-set is then supplied to the classifiers for identification of Paddy Leaf diseases. The usage of cascaded classifiers has been explored to detect the diseases of paddy leaves. An attempt has also been made to use genetic algorithm with nearest neighbour algorithm to identify the diseases of paddy leaves. The proposed automated system can be used on Android , Windows platform and Apple platform for quickly identifying the paddy leaf diseases as the entire implementation has been performed using MATLAB. The proposed automated system can certainly help the farmers to classify the diseased paddy leaves at early stage to protect the crops from further damage.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here