z-logo
open-access-imgOpen Access
Signature Verification Using Support Vector Machine and Convolution Neural Network
Author(s) -
Kritika Vohra
Publication year - 2021
Publication title -
türk bilgisayar ve matematik eğitimi dergisi
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 3
ISSN - 1309-4653
DOI - 10.17762/turcomat.v12i1s.1564
Subject(s) - signature (topology) , pattern recognition (psychology) , support vector machine , computer science , artificial intelligence , convolutional neural network , identification (biology) , feature (linguistics) , histogram , feature extraction , image (mathematics) , identity (music) , mathematics , linguistics , philosophy , botany , geometry , physics , acoustics , biology
Signature is used for recognition of an individual. Signature is considered as a mark that an individual write on a paper for his/her identity or proof. It is used as a unique feature for identifying an individual. It is highly used in social and business functions which gives rise to verification of signature. There are chances of signature getting forged. Hence, the need to identify signature as genuine of forged is utmost important. In this paper, identification of signature as genuine or forged is done using two approaches. First approach is using SVM and second is using CNN. For SVM, pre-processing of signature image is done and feature extraction is performed. Features extracted are histogram of gradient, shape, aspect ratio, bounding area, contour area and convex hull area. Further, SVM is applied to classify signature as genuine or forged and accuracy is determined. In the second approach, signature image is pre-processed, CNN is used to classify signature as genuine or forged and accuracy is determined. Dataset used here is ICDAR Dutch dataset along with 80 signatures taken from 4 people.Dutch dataset consists of 362 signature imagesand signature images taken from 4 people consists 10 genuine and 10 forged signatures which sums to 442 signature images. The proposed system provides accuracy of 86.39% using SVM and around 83.78% using CNN.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here