
New polymorphic varieties of boron nitride with graphene-like structures
Author(s) -
Dmitry S. Ryashnetsev,
E. A. Belenkov
Publication year - 2021
Publication title -
radioèlektronika, nanosistemy, informacionnye tehnologii
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.204
H-Index - 5
eISSN - 2414-1267
pISSN - 2218-3000
DOI - 10.17725/rensit.2021.13.349
Subject(s) - boron nitride , graphene , materials science , sublimation (psychology) , density functional theory , boron , monolayer , band gap , crystallography , nitride , chemical physics , computational chemistry , layer (electronics) , nanotechnology , chemistry , optoelectronics , organic chemistry , psychotherapist , psychology
First-principle calculations of the structure and electronic properties of four new polymorphic varieties of graphene-like boron nitride, the structure of which is similar to the structure of graphene polymorphs, the atoms in which are in the spirit of different structural positions, were performed by the density functional theory method in the generalized gradient approximation. As a result of the studies carried out, the possibility of stable existence of three monoatomic boron nitride layers: BN-L4-6-8a, BN-L4-6-8b and BN-L4-10 has been established. The BN-L4-12 layer is transformed into the BN-L4-6-8 layer during geometric optimization. The lengths of interatomic bonds in boron nitride monolayers vary in the range 1.4353 Å ÷ 1.4864 Å, and the bond angles in the range 84.05° ÷ 152.26°. The band gap of the BN layers varies from 3.16 eV to 3.90 eV. Sublimation energies are in the range from 16.67 eV/(BN) to 17.61 eV/(BN).