
MODELING OF THERMAL INSTALLATIONS BASED ON THERMODYNAMIC APPROACHES
Author(s) -
Volodymyr Voloshchuk,
E. I. NIKIFOROVICH
Publication year - 2021
Publication title -
žurnal občislûvalʹnoï ta prikladnoï matematiki
Language(s) - English
Resource type - Journals
eISSN - 2706-9699
pISSN - 2706-9680
DOI - 10.17721/2706-9699.2021.1.06
Subject(s) - exergy , laws of thermodynamics , thermodynamic system , entropy (arrow of time) , computer science , thermal , heat transfer , process engineering , biochemical engineering , thermodynamics , engineering , physics , non equilibrium thermodynamics
The most widespread approaches to the study of thermal systems involve the iterative implementation of the following steps: thermodynamics, heat and mass transfer, hydrodynamics, economics and ecology. Such methodology cannot combine economic, environmental and thermodynamic aspects from the beginning of the analysis. It does not provide information concerning not only external, but also internal, caused by thermodynamic inefficiencies of system components, impact factors on economic and ecological characteristics. Modeling methods based on the combined application of the First and Second Laws of Thermodynamics (methods of entropy and exergetic analysis), and their combination with economic and environmental assessment make it possible to identify the location, magnitude, causes, costs and environmental impact of thermodynamic inefficiencies in an energy conversion system. The paper proposes the improvement of methods for modeling thermal systems on the base of exergy analysis. It has been shown that combining exergetic, economic and ecological assessment can significantly simplify tasks of finding parameters and structure of the studied system. Examples of implementation of such studies have been presented.