
Mathetical problem of banking assets diversification
Author(s) -
Victor R. Kulian,
Olena Yunkova
Publication year - 2021
Publication title -
vìsnik. serìâ fìziko-matematičnì nauki/vìsnik kiì̈vsʹkogo nacìonalʹnogo unìversitetu ìmenì tarasa ševčenka. serìâ fìziko-matematičnì nauki
Language(s) - English
Resource type - Journals
eISSN - 2218-2055
pISSN - 1812-5409
DOI - 10.17721/1812-5409.2021/1.11
Subject(s) - mathematical optimization , optimization problem , diversification (marketing strategy) , database transaction , point (geometry) , computer science , investment strategy , investment (military) , nonlinear programming , mathematics , nonlinear system , economics , finance , market liquidity , business , physics , geometry , political science , law , programming language , marketing , quantum mechanics , politics
In article we consider a problem of optimal investment strategy by a commercial bank building. This task is actual and the development of a procedure to solve it can help in making investment banking decisions. The general formulation of the problem consists of two criteria. The first one is to maximize the expected return, and the second is to minimize the risk of the investment transaction. Mathematical formulation of the problem is considered as a problem of nonlinear programming under constraints. The procedure for solving such a two-criteria optimization problem allows to obtain many solutions, which requires further steps to make a single optimal solution. According to the algorithm proposed in the work, the problem is divided into two separate problems of single-criteria optimization. Each of these tasks allows to obtain the optimal values of the investment vector both in terms of its expected return and in terms of investment risk. Additional constraints in the mathematical formulation of the problem, make it possible to take into account factors that, from the point of view of the investor, may influence decision-making. The procedures presented in this work allow to obtain analytical representations of formulas that describe the optimal values of the investment distribution vector for both mathematical formulations of the problem.