Extremely low-coverage sequencing and imputation increases power for genome-wide association studies
Author(s) -
Bogdan Paşaniuc,
Nadin Rohland,
Paul J. McLaren,
Kiran Garimella,
Noah Zaitlen,
Heng Li,
Namrata Gupta,
Benjamin M. Neale,
Mark J. Daly,
Pamela Sklar,
Patrick F. Sullivan,
Sarah E. Bergen,
Jennifer L. Moran,
Christina M. Hultman,
Paul Lichtenstein,
Patrik K. E. Magnusson,
Shaun Purcell,
David W. Haas,
Liming Liang,
Shamil Sunyaev,
HonCheong So,
Paul I. W. de Bakker,
David Reich,
Alkes L. Price
Publication year - 2012
Publication title -
carolina digital repository (university of north carolina at chapel hill)
Language(s) - English
DOI - 10.17615/haws-ma91
Subject(s) - imputation (statistics) , genome wide association study , genetic association , computational biology , biology , genetics , computer science , single nucleotide polymorphism , machine learning , gene , genotype , missing data
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom