z-logo
open-access-imgOpen Access
Research on GTE-110 gas turbine operating modes for limiting nitrogen oxide emissions of ccgt power units
Author(s) -
I K Muravev,
A.B. Korovkin,
R.A. Shitov
Publication year - 2020
Publication title -
vestnik igèu
Language(s) - English
Resource type - Journals
ISSN - 2072-2672
DOI - 10.17588/2072-2672.2020.1.011-021
Subject(s) - nitrogen oxide , combustion , environmental science , nox , volume (thermodynamics) , gas turbines , power station , process engineering , nuclear engineering , engineering , mechanical engineering , chemistry , thermodynamics , physics , organic chemistry , electrical engineering
Gas turbines are actively used as a part of combined-cycle power units having less impact on the environ-ment than installations operating on other types of fuel. However, their emissions contain harmful carbon compounds and nitrogen oxides. Some research studies considered the effect of emissions upon changes in the coefficient of excess air. At the same time, no attention was paid to the influence of other operational parameters and technological limitations associated with the safe operation of combined-cycle CCGT equipment, and no assessment was made of the impact of climatic factors on environmental indicators. Thus, it is important to conduct separate studies to assess the influence of regime and climatic factors on the stability of the combustion process in the combustion chamber of a gas turbine, on the environmental performance of the installation and the compliance of these indicators with the standards. The research used data from the control system archive, and a simulation model was developed in the SimInTech environment. The following assumptions are made in the model: the fuel composition does not change and it enters the single combustion zone without separation into the pilot and central zones of the combustion chamber. The methodology for calculating emissions is reduced to dividing their volume into NO and NO2 due to the transformation of nitrogen oxides in the air. Subsequently, the values of the total concentration are recalculated to a single NOx value. A simulation model for calculating emissions has been obtained. The effect of excess air on nitrogen oxide emissions considering the technological zones of gas turbines of outdoor air temperature (To.a) from –20 to +30 оС and the power from 48 to 110 MW has been assessed. It has been shown that near the nominal load the maximum NOx emission are observed. In general, the results obtained indicate that the requirements for NOx emission standards are met in the entire operating range of gas turbine load changes. However, the reserve of a possible deviation of emissions to a critical level is only 10 %. The verification of the developed model is based on operational trends. The recommendations on operational management have been formulated for power unit operators in order to maintain an ac-ceptable level of NOx emissions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here