
Synthesis, Characterization and Crystal Structures of Schiff Base Copper Complexes with Urease Inhibitory Activity
Author(s) -
SongDe Han,
Yuan Wang
Publication year - 2021
Publication title -
acta chimica slovenica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.289
H-Index - 46
eISSN - 1580-3155
pISSN - 1318-0207
DOI - 10.17344/acsi.2021.6965
Subject(s) - urease , chemistry , molar conductivity , copper , schiff base , square pyramidal molecular geometry , urea , hydrogen bond , crystal structure , molecule , crystal (programming language) , single crystal , infrared spectroscopy , crystallography , inorganic chemistry , medicinal chemistry , stereochemistry , elemental analysis , organic chemistry , computer science , programming language
Urease inhibitors can inhibit the decomposition rate of urea, and decrease the air pollution caused by ammonia. In this paper, four new copper(II) complexes [CuL(ONO2)]n (1), [Cu2L2(μ1,3-N3)2] (2), [CuBrL] (3), and [CuClL] (4), where L = 5-bromo-2-(((2-methylamino)ethyl)imino)methyl)phenolate, have been synthesized and characterized. The complexes were characterized by elemental analyses, IR and UV-Vis spectroscopy, molar conductivity, and single crystal X-ray diffraction. X-ray analysis reveals that Cu atoms in complexes 1 and 2 are in square pyramidal coordination, and those in complexes 3 and 4 are in square planar coordination. The molecules of the complexes are linked through hydrogen bonds and π···π interactions. The inhibitory effects of the complexes on Jack bean urease were studied, which showed that the complexes have effective activity on urease.