z-logo
open-access-imgOpen Access
Оптимизация методики получения рекомбинантных двухдоменных лакказ
Author(s) -
Liubov Trubitsina,
Иван Васильевич Трубицин,
Александр Викторович Лисов
Publication year - 2020
Publication title -
sorbcionnye i hromatografičeskie processy
Language(s) - Russian
Resource type - Journals
ISSN - 1680-0613
DOI - 10.17308/sorpchrom.2020.20/2386
Subject(s) - humanities , physics , philosophy
Лакказы (К.Ф. 1.10.3.2) – ферменты из семейства медьсодержащих оксидаз, активный центркоторых содержит 4 атома меди. Лакказы способны окислять широкий спектр органический и неорганических соединений. Ферменты данного класса используют в биотехнологических целях (в целлюлозно-бумажной, текстильной, пищевой промышленности). В структурном отношении лакказыподразделяют на 2 группы: двухдоменные (2д) и трёхдоменные (3д) ферменты. Характерные особенности 2д лакказ – устойчивость к специфичным ингибиторам семейства медьсодержащих оксидаз, а также высокая термостабильность. Окислительно-восстановительный потенциал 2д лакказ ниже потенциала 3д ферментов. Однако он может быть повышен благодаря использованию редоксмедиаторов. Высокая термостабильность и устойчивость к действию ингибиторов – важные критерии отбора ферментов для нужд биотехнологии. Также важным критерием для биотехнологически значимых ферментов является стоимость их производства. Если получение фермента требует значительных затрат, а выход конечного продукта низок, то производство фермента нецелесообразно.Поэтому целью данной работы является оптимизация процесса получения двухдоменных рекомбинантных лакказ, экспрессируемых гетерологично в штамме Escherichia coli, с расчетами стоимости конечного продукта (на примере ферментов SgfSL, SvSL и SaSL, полученных в нашей лаборатории). Ранее три рекомбинантные двухдоменные лакказы были клонированы и  экспрессированы в штамме Escherichia coli M15 (pRep4). В данной работе мы исследовали влияние различных факторов на максимальный выход лакказ: влияние ионов меди, концентрации индуктора, условий культивирования, оптической плотности культуры, и других условий. Было показано, что оптимальная концентрация ионов меди составляет 1 мМ, а оптимальная концентрация индуктора ИПТГ составляет 0,1мМ (при этом отсутствует эффект агрегирования и наблюдается высокий выход ферментов). Мы подтвердили выводы коллег о том, что для получения лакказ, максимально насыщенных ионами меди, необходимы микроаэробные условия культивирования. Без стадии микроаэробного роста удельная активность очищенных ферментов снижается в 2 раза. Было обнаружено, что слишком высокая скорость перемешивания клеток при индукции синтеза лакказ приводит к агрегации ферментов. Скорость перемешивания, при которой лакказы не агрегируют, составляет 50-100 об/мин.Выводы: был разработан и оптимизирован процесс получения двухдоменных бактериальныхрекомбинантных лакказ. Максимальный выход ферментов составил 180 мг белка с литра среды. Фер-мент имел низкую себестоимость (16-32 евро за 1 г белка).         ЛИТЕРАТУРА 1. Baldrian P. // FEMS Microbiol Lett. 2006. Vol. 30. No 2. pp. 215-242.2. Claus H. // Arch Microbiol. 2003. Vol. 179. No 3. pp. 145-150.3. Otto B., Schlosser D. // Planta. 2014. Vol. 240. No 6. pp. 1225-1236.4. Lisov A.V., Zavarzina A.G., Zavarzin A.A., Leontievsky A.A. // FEMS Microbiol Lett.2007. Vol. 275. No 1. pp. 46-52.5. Thurston C.F. // Microbiology. 1994. Vol. 140. pp. 19-26.6. Sterjiades R., Dean J.F., Eriksson K.E. // Plant Physiol. 1992. Vol. 99. No 3. pp. 1162-1168.7. Endo K., Hosono K., Beppu T., Ueda K. // Microbiology. 2002. Vol. 148. pp. 1767-1776.8. Lu L., Zeng G., Fan C., Zhang J. et al. // Appl Environ Microbiol. 2014. Vol. 80. No 11. pp. 3305-3314.9. Minussi R.C., Pastore G.M., Duran N. // Trends Food Sci Tech. 2002. Vol. 13. No 6-7. рр. 205-216.10. Dominguez A., Couto S.R., Sanroman M.A. // World J Microbiol Biotechnol. 2005. Vol. 21. No 4. pp. 405-409.11. Couto S.R., Herrera J.L.T. // Biotechnol Adv. 2006. Vol. 24. No 5. pp. 500-513.12. Trubitsina L.I., Tishchenko S.V., Gabdulkhakov A.G., Lisov A.V. et al. // Biochimie.2015. Vol. 112. pp. 151-159.13. Tishchenko S., Gabdulkhakov A., Trubitsina L., Lisov A. et al. // Acta Crystallogr F Struct Biol Commun. 2015. Vol. 71. pp. 1200-1204.14. Lisov A.V., Trubitsina L.I., Lisova Z.A., Trubitsin I.V. et al. // Process biochemistry. 2019. Vol. 76. pp. 128-135.15. Durao P., Chen Z., Fernandes A.T., Hildebrandt P. et al. // J Biol Inorg Chem. 2008. Vol. 13. No 2. pp. 183-193.16. Gunne M., Urlacher V.B. // PLoS One. 2012. Vol. 7. No 12. pp. e52360.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here