z-logo
open-access-imgOpen Access
Инструменты повышения эффективности численных алгоритмов обучения структуры динамических байесовских сетей
Author(s) -
Павел Валерьевич Полухин
Publication year - 2019
Publication title -
vestnik voronežskogo gosudarstvennogo universiteta. seriâ sistemnyj analiz i informacionnye tehnologii
Language(s) - Russian
Resource type - Journals
ISSN - 1995-5499
DOI - 10.17308/sait.2019.4/2688
Subject(s) - political science
Модели динамических байесовских сетей используются для описания процессов, протекающих в условиях риска и неопределенности, случайный характер имеют не только вершины графа сети, но связи между вершинами. Для определения наличия причинно-следственных связей и их направленности применяют специальные экспертные и статистические методы обучения структуры и параметров сети. При использовании экспертных методов построения байесовских сетей структуру графа задает эксперт на основании своего опыта в исследуемой области, и тогда, обучаются только параметры сети, соответствующие условно-вероятностным распределениям вершин сети. Не всегда эксперт может правильно определить причинно-следственные связи между вершинами сети и их направленность. Достаточно эффективными являются формализованные процедуры обучения структуры и параметров сети. Формализованные методы обучения структуры сети включают этап определения зависимости между вершинами сети и этап определения направленности связей. На этапе определения направленности исследование носит локальный характер и подразумевает решение целого ряда оптимизационных задач. Как правило, в качестве алгоритмов обучения динамических байесовских сетей применяются численные оптимизационные алгоритмы. В связи с большой размерностью решаемых задач, эффективность процедур обучения динамических байесовских сетей зависит от эффективности используемых численных алгоритмов. Достаточно часто применяются численные алгоритмы, построенные на основе Ньютоновского подхода. В данной статье описано применение различных инструментов повышения эффективности Ньютоновских алгоритмов для решения задач обучения структуры динамических байесовских сетей. Применение методов Бройдена, Девидона-Флетчера-Пауэлла и Бройдена-Флетчера-Гольдфарба-Шанно позволяет существенно повысить эффективность алгоритмов, а также дает возможность использовать распараллеливание отдельных блоков.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here