z-logo
open-access-imgOpen Access
miR-212-3p attenuates neuroinflammation of rats with Alzheimer's disease via regulating the SP1/BACE1/NLRP3/Caspase-1 signaling pathway
Author(s) -
Weiping g,
Chuanhong Bao,
Yixin Chen,
Wei Zhi-quan
Publication year - 2022
Publication title -
bosnian journal of basic medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.738
H-Index - 25
eISSN - 1840-4812
pISSN - 1512-8601
DOI - 10.17305/bjbms.2021.6723
Subject(s) - neuroinflammation , pyroptosis , microbiology and biotechnology , neuroprotection , viability assay , signal transduction , morris water navigation task , amyloid precursor protein , caspase 1 , medicine , alzheimer's disease , pharmacology , neuroscience , biology , apoptosis , receptor , inflammasome , immunology , biochemistry , inflammation , disease , hippocampus
Alzheimer's disease (AD) ranks as the leading cause of dementia. MicroRNA (miR)-212-3p has been identified to exert neuroprotective effects on brain disorders. The current study analyzed the protective role of miR-212-3p in AD rats via regulating the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)/Caspase-1 signaling pathway. The AD rat model was established via injection of amyloid-β 1-42 (Aβ1-42), followed by the Morris water maze test. The morphology and functions of neurons were observed. Furthermore, miR-212-3p, NLRP3, cleaved Caspase-1, gasdermin D N-terminus, interleukin (IL)-1β and IL-18 expressions were measured. H19-7 cells were treated with Aβ1-42 to establish the AD cell model, followed by an assessment of cell viability and pyroptosis. Downstream targets of miR-212-3p and specificity protein 1 (SP1), as well as beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) were predicted by databases and testified using dual-luciferase and chromatin immunoprecipitation assays. miR-212-3p was weakly expressed in AD rats. miR-212-3p overexpression was linked to improved learning and memory capacities of AD rats and reduced neuronal pyroptosis linked to neuroinflammation attenuation. In vitro, miR-212-3p improved viability and suppressed pyroptosis of neurons via inhibiting NLRP3/Caspase-1. Overall, miR-212-3p inhibited SP1 expression to block BACE1-induced activation of NLRP3/Caspase-1, thereby attenuating neuroinflammation of AD rats.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here