
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF REFRACTORY HIGH-ENTROPY ALLOY HfMoNbTiCr
Author(s) -
Jiaojiao Yi,
Lu Wang,
Mengfei Xu,
Lin Yang
Publication year - 2021
Publication title -
materiali in tehnologije
Language(s) - English
Resource type - Journals
eISSN - 1580-3414
pISSN - 1580-2949
DOI - 10.17222/mit.2020.197
Subject(s) - materials science , laves phase , alloy , microstructure , ductility (earth science) , compressive strength , metallurgy , high entropy alloys , arc melting , phase (matter) , composite material , intermetallic , creep , chemistry , organic chemistry
A new refractory alloy, HfMoNbTiCr, was obtained by replacing Zr with Cr or Mo in the HfMoNbTiZr or HfNbTiCrZr alloys using vacuum arc melting. The phase components, microstructures and compressive properties of the alloy in the as-cast and annealed states were investigated. The results showed that the phase components changed from a single BCC phase in HfMoNbTiZr and BCC+Laves phases in HfNbTiCrZr to multiple phases – primarily two BCC phases and two cubic Laves phases – in HfMoNbTiCr. Notably, the yield and ultimate compressive strength of the as-cast alloy significantly increased from 1719 and 1803 MPa to 1851 and 2489 MPa, without a decrease in the ductility. The stress fields induced by Mo and the Cr-containing Laves phases were responsible for the enhanced strength, while the stiff network-like framework composed of intrinsically-strong Cr-containing Laves phases may have played a vital role in retaining the ductility.