z-logo
open-access-imgOpen Access
Conditions for the physical realizability of a typical component z(y)-matrix of a matching quadrupole of a general form in a concentrated elemental basis
Author(s) -
Gennady N. Devyatkov
Publication year - 2020
Publication title -
proceedings of the russian higher school academy of sciences
Language(s) - English
Resource type - Journals
eISSN - 2658-3747
pISSN - 1727-2769
DOI - 10.17212/1727-2769-2020-3-13-20
Subject(s) - realizability , immittance , basis (linear algebra) , mathematics , matching (statistics) , realization (probability) , matrix (chemical analysis) , mathematical analysis , topology (electrical circuits) , electronic circuit , algorithm , electronic engineering , physics , geometry , combinatorics , statistics , materials science , quantum mechanics , engineering , composite material
When solving problems of broadband matching, very often there is a need for a certain form of the amplitude-frequency characteristic. In connection with this, the problem comes up of synthesizing broadband matching devices that simultaneously have correcting properties, i.e. having a given frequency dependence of the power conversion coefficient in the operating frequency band. The use of broadband reactive matching - correcting circuits in most practical cases is difficult because of the reflected power. This leads to the problem of the synthesis of broadband matching-correcting circuits with arbitrary immittances of the signal source and load in an elemental basis of a general form, containing along with reactive and active elements, which has not been adequately solved. Therefore, it becomes necessary to find the conditions for the physical realizability of a typical component of the immitance matrix of a two-port network of general form containing poles in the left half-plane of complex frequencies. In this paper the necessary and sufficient conditions are defined for the physical realizability of the immitance matrix of a typical component of a subclass of two-terminal networks of general form in a lumped elemental electric basis, when the poles of the Eigen functions in the Foster representation can be in the left half-plane of complex frequencies, excluding the imaginary and real axes. This allows to synthesis of broadband dissipative matching, matching-correcting circuits and matched attenuators in an elemental basis of a general form with arbitrary immitances of the signal source and load from a single point of view.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom