
Effect of Moistube and subsurface drip irrigation on cowpea (Vigna unguiculata (l.) Walp) production in South Africa
Author(s) -
Edwin Kimutai Kanda,
Aidan Senzanje,
Tafadzwanashe Mabhaudhi
Publication year - 2020
Publication title -
water s.a./water sa
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.389
H-Index - 59
eISSN - 1816-7950
pISSN - 0378-4738
DOI - 10.17159/wsa/2020.v46.i2.8234
Subject(s) - vigna , irrigation , drip irrigation , water use efficiency , agronomy , environmental science , crop , biology
Moistube irrigation (MTI) is a new subsurface irrigation technology where the water emits from a semi-permeable membrane at a slow rate depending on applied pressure and soil water potential. There is lack of information on how various crops respond to MTI. This study determined growth, yield and water use efficiency (WUE) of cowpea (Vigna unguiculata (L.) Walp) under varying water regimes under MTI and subsurface drip irrigation (SDI), using field and glasshouse experiments in summer and winter of 2018, respectively. A split-plot design arranged in randomized complete blocks, replicated 3 times, with SDI as the control experiment was used. The main plot was irrigation type while the sub-plots were the water regimes. The water treatments consisted of full irrigation (100% of crop water requirement (ETc)), and deficit irrigation (DI) of 70% ETc and 40% ETc. Water deficit had a significant effect (p 0.05) differences were recorded between SDI and MTI. However, at 40% ETc, SDI had 15% higher yield than MTI. Biomass varied significantly (p < 0.05) with irrigation type and water treatment. Grain WUE varied significantly (p < 0.05) among the water regimes. The highest WUE was achieved under SDI at 70% ETc but was not significantly different from that under MTI at 70% ETc. In conclusion, performance of cowpea was similar under the two irrigation systems under moderate DI but was better for SDI under severe DI with respect to biomass and WUE for the summer trial. Moderate DI improved the grain WUE while all the DI conditions improved the biomass WUE.