
Linear spaces of games on the unit square with pure equilibrium points
Author(s) -
Виктория Леонидовна Крепс,
Victoria Kreps
Publication year - 2020
Publication title -
mathematical game theory and applications
Language(s) - English
Resource type - Journals
ISSN - 2074-9872
DOI - 10.17076/mgta_2020_3_19
Subject(s) - square (algebra) , mathematics , unit (ring theory) , unit square , dimension (graph theory) , set (abstract data type) , zero (linguistics) , combinatorics , finite set , mathematical analysis , mathematical economics , pure mathematics , geometry , computer science , linguistics , philosophy , mathematics education , programming language
The set of all linear spaces of continuous two-person zero-sum games on the unit square with pure equilibrium points is considered. It is shown that the set contains maximal linearspaces of any finite dimension greater than three.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom