z-logo
open-access-imgOpen Access
Linear spaces of games on the unit square with pure equilibrium points
Author(s) -
Виктория Леонидовна Крепс,
Victoria L. Kreps
Publication year - 2020
Publication title -
matematičeskaâ teoriâ igr i eë priloženiâ
Language(s) - English
Resource type - Journals
ISSN - 2074-9872
DOI - 10.17076/mgta_2020_3_19
Subject(s) - square (algebra) , mathematics , unit (ring theory) , unit square , dimension (graph theory) , set (abstract data type) , zero (linguistics) , combinatorics , finite set , mathematical analysis , mathematical economics , pure mathematics , geometry , computer science , linguistics , philosophy , mathematics education , programming language
The set of all linear spaces of continuous two-person zero-sum games on the unit square with pure equilibrium points is considered. It is shown that the set contains maximal linearspaces of any finite dimension greater than three.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here