Open Access
Linear spaces of games on the unit square with pure equilibrium points
Author(s) -
Виктория Леонидовна Крепс,
Victoria L. Kreps
Publication year - 2020
Publication title -
matematičeskaâ teoriâ igr i eë priloženiâ
Language(s) - English
Resource type - Journals
ISSN - 2074-9872
DOI - 10.17076/mgta_2020_3_19
Subject(s) - square (algebra) , mathematics , unit (ring theory) , unit square , dimension (graph theory) , set (abstract data type) , zero (linguistics) , combinatorics , finite set , mathematical analysis , mathematical economics , pure mathematics , geometry , computer science , linguistics , philosophy , mathematics education , programming language
The set of all linear spaces of continuous two-person zero-sum games on the unit square with pure equilibrium points is considered. It is shown that the set contains maximal linearspaces of any finite dimension greater than three.