
Direct microalloying of steel with cerium under slags of СаО–SiO 2 – Ce2O3– 15 % Al2O3 –8 % MgO system with additional reducing agents
Author(s) -
А. Г. Уполовникова,
А. А. Бабенко,
Л. А. Смирнов,
Л. Ю. Михайлова
Publication year - 2021
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2021-8-581-587
Subject(s) - cerium , slag (welding) , cerium oxide , metal , aluminium , oxide , chemistry , materials science , metallurgy , inorganic chemistry , nuclear chemistry
An assessment of the possibility of steel direct microalloying with cerium was performed using thermodynamic modeling of cerium reduction from slags of CaO– SiO2– Ce2O3 system containing 15 % Al2O3 and 8 % МgO, additional additives of reducing agents (aluminum or ferrosilicoaluminium), at temperatures of 1550 and 1650 °C using the HSC 6.1 Chemistry (Outokumpu) software package. Depending on the additional additives of aluminum or ferroglycoaluminium, metal temperature, slag basicity and content of cerium oxide, 0.228 to 40.5 ppm of cerium transfers into the metal. With an additional additive of aluminum from slag (Y1) containing 1.0 % of cerium oxide, 0.228 ppm of cerium is transferred to the metal at 1550 °C. An increase in the system temperature to 1650 °C is accompanied by a slight increase in cerium content, reaching no more than 0.323 ppm. When added to ferrosilicoaluminium metal, cerium content in the metal is higher and amounts to 0.402 and 0.566 ppm at 1550 and 1650 °C, respectively. When concentration of cerium oxide in the slag (Y2) increases to 7.0 %, more signifcant increase in cerium content in the metal is observed, reaching in temperature range of 1550 – 1650 °C, 1.65 – 2.31 ppm with aluminum additives and 2.90 – 4.05 ppm with ferrosilicoaluminium additives. The most noticeable increase in cerium content in the metal is observed with an increase in slag basicity. During formation of slags with basicity of 2 – 3, containing 1 – 7 % Ce2O3, the equilibrium concentration of cerium in the metal varies from 0.5 to 4 ppm with aluminum additives and 1 – 7 ppm with ferrosilicoaluminium additives at 1550 °C. Slags transfer to the increased (up to 3 – 5) basicity is accompanied by an increase in the equilibrium content of cerium in the metal to 4 – 12 ppm with aluminum additives and 7 – 20 ppm with ferrosilicoaluminium additives at Ce2O3 content of 3 – 7 % and, as a result, an increase in efciency of cerium reduction process.