
Automated electric drive for the control system of two-coordinate welding machine
Author(s) -
К. В. Лицин,
A. V. Tsukanov
Publication year - 2021
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2021-5-382-388
Subject(s) - automation , operability , programmable logic controller , process (computing) , robot welding , welding , electric machine , computer science , control engineering , torque , engineering , mechanical engineering , stator , physics , software engineering , thermodynamics , operating system
Two-coordinate welding machine is used to obtain welds on various elements of high quality metal structures. The main disadvantage of the existing equipment is that the work on this machine is currently performed manually. This operation is quite dangerous and monotonous. In addition, hydraulic drive is used as the main drive of the system. Replacement of the hydraulic drive of a two-coordinate welding machine with an electric drive is substantiated in order to increase the efficiency of the entire system. The authors have developed an automated system for a two-coordinate machine for welding embeds, controlled on the basis of a programmable logic controller. A functional diagram of an automated electric drive for such machine was proposed. The design of the object’s electric drive was carried out. The necessary elements of the developed automation system were selected. On the basis of the technological process, an algorithm has been developed that allows automating the process of embeds welding. The developed algorithm provides the necessary security measures, carrying out self-diagnostics at the stage of system startup. In order to check the performance of the developed algorithm, an automated electric drive was simulated using the MATLAB Simulink software. The developed system contains two internal and three external circuits that control the required parameters: speed, current, torque, flux linkage and force. The dynamic characteristics of the presented parameters are obtained, confirming the operability of the developed automated electric drive system. An economic calculation of the automation system proposed for implementation has been carried out. The total costs for the modernization will amount about 55 thousand rubles with a payback period of about one year.