
Wasteless processing of ladle furnace and electric arc furnace slag
Author(s) -
О. Ю. Шешуков,
Д. К. Егиазарьян,
Д. А. Лобанов
Publication year - 2021
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2021-3-192-199
Subject(s) - slag (welding) , electric arc furnace , metallurgy , ladle , portland cement , mineral processing , waste management , ground granulated blast furnace slag , clinker (cement) , environmental science , materials science , engineering , cement
The actual problem of mineral resources depletion in ferrous metallurgy can be effectively solved by complex reuse of technogenic waste. That waste is mostly presented by EAF (electric arc furnace) slag and LF (ladle furnace) slag. These two kinds of slag have no complex full utilization. The residues of slag are going to the dump and then the slag dump locations pollute the environment. However, the residues of EAF and LF slag can be transformed into the valuable industrial product by interaction of the slag components. This work presents the research for joint wasteless processing of EAF and LF slag with production of Portland clinker and cast iron. The article describes disadvantages of known methods of each slag processing; the paper also shows the significance of LF slag utilization. Design and calculations of the research are presented as well as its experiment methodology. The final results show five chemical compositions for the mixtures, which allow the complex processing of this slag without any waste left. Such processing provides the production of cast iron and Portland clinker both meeting requirements of normative documents. The paper also describes the results of viscosity measurements of slag compositions, the obtained slag phases, and presents the final temperature conditions. The work also considers the results of industrial tests for the developed processing technology and a complete technological chain involving the use of tilt rotary furnaces.