
Technological modes of metals direct reduction in an aggregate of jet-emulsion type
Author(s) -
И. А. Рыбенко,
Hans-Görg Roos
Publication year - 2020
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2020-5-364-372
Subject(s) - reduction (mathematics) , aggregate (composite) , process (computing) , mathematical optimization , computer science , mathematical model , process engineering , production (economics) , optimization problem , mathematics , engineering , materials science , statistics , geometry , economics , composite material , macroeconomics , operating system
The paper presents the method and instrumental system for modeling and optimizing technological modes of direct metal reduction processes in a jet-emulsion aggregate (JER). Stages of the method are considered. The first one is the problem statement: formation of target conditions, choice of the process type, the task and system of optimization criteria. The second stage includes selection of the object of study: setting parameters of input and output flows, process parameters, stages and subprocesses. The third one includes thermodynamic modeling to assess the final equilibrium state in which optimization problem is solved to determine the best conditions for implementation of the processes of metal reduction from oxides in model systems. The fourth stage is development of metallurgical technology (finding the optimum modes and ways for achieving these modes by specified output stream parameters). And the final one is process optimization in technical and economic indicators. As part of the fourth stage, the complex of mathematical models has been developed that reflects relationship of flows and processes in a metallurgical unit. The structure of instrumental system is presented, in which mathematical models and an algorithm for determining optimal technological modes are implemented. A set of optimization criteria has been developed and a scheme for solving two types of optimization problems are presented: finding optimal conditions for reduction processes in thermodynamic systems and determining optimal modes of direct metal reduction. Application of the method to develop optimal technological modes of direct metal production in a JER-type aggregate is shown: metal production from cast iron and mill scale; direct reduction of metal from dusty ores and iron-containing man-made materials; obtaining manganese alloys from carbonate and oxide ores; processing titanium-magnetite concentrates with an almost complete separation of iron-containing and titaniumcontaining component; and direct reduction of iron with associated production of high-calorie synthesis gas.