z-logo
open-access-imgOpen Access
SCREW ROLLING OF PIPES IN A FOUR-HIGH ROLLING MILL
Author(s) -
Б. А. Романцев,
Eugene Kharitonov,
А. С. Будников,
Van Chong Le,
Ba Khyui Chan
Publication year - 2019
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2019-9-686-690
Subject(s) - plasticine , materials science , barrel (horology) , composite material , cross section (physics) , reducer , mill , rotational speed , mechanical engineering , engineering , geology , physics , petrology , quantum mechanics
A model of four-high screw rolling mill was developed and manufactured with the help of additive technologies. The work rolls are installed: the main ones – by cup-shaped scheme and auxiliary – by mushroom scheme with an angle of rolling of ±7 degrees, with an unregulated feed angle of 15 degrees. The main and auxiliary rolls have a barrel length of 70 mm. Diameter of the main rolls in pinching is 50 mm, of auxiliary rolls – 36 mm. At the exit in cross section of the tube outlet from the rolls, their diameters are almost the same and are 72 mm. Each of the four rolls is driven by an individual drive with a 100 W motor-reducer and a rotational speed of 60 rpm by a mushroom scheme and of 83 rpm by a cup-shaped one, which minimizes the divergence of peripheral speeds in the deformation zone at different roll diameters. On the developed model of four-high rolling mill, rolling of liners from plasticine with a diameter of 25 mm with a wall thickness of 7.5 was carried out; 5.5 and 3.5 mm, corresponding to the ratio of diameter to wall thickness 3; 5 and 8. Pipe rolling was carried out on floating mandrels with diameters of 9, 13 and 17 mm. After rolling, measurements of the diameter and wall thickness of the pipes were carried out in 5 cross sections that were equally spaced from each other. In each cross section, the diameter was measured at 5, and the wall thickness at 10 points. The finite element method has been used to simulate the process of rolling these pipes in the QForm program. Assessment of the model adequacy was carried  out by comparing the size of pipes and their accuracy after rolling with the results of computer simulation. When rolling at a four-high rolling mill, the wall thickness is significantly reduced.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here