z-logo
open-access-imgOpen Access
High nitrogen steels
Author(s) -
Ts. Rashev,
А. В. Елисеев,
Л. Ц. Жекова,
П. В. Богев
Publication year - 2019
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2019-7-503-510
Subject(s) - materials science , austenite , metallurgy , carbide , nitride , nitrogen , martensite , tempering , carbon fibers , microstructure , composite material , composite number , physics , layer (electronics) , quantum mechanics
The article provides a brief overview of the properties and production technology of high-nitrogen steels (HNS), which have several advantages over traditional ones. The main advantages are: up to four times higher yield strength with unique preservation of the remaining characteristics; reduction in consumption or a 100  % elimination of the use of some expensive alloying elements, such as Ni, Mo, Co, W, and others; effective alloying with unconventional elements (Ca, Zn, Pb, etc.). The basics of HNS technology, dependence of the properties on nitrogen content in steels, producing technologies for ferritic-pearlitic, martensitic and austenitic steel, their properties and applicability are discussed. Alloying with nitrogen for ferritic-pearlitic steel requires more precise adherence to the chemical composition in order to prevent the formation of insoluble nitrides during heat treatment (due to its greater solubility compared to carbon). Features of martensitic steels are associated with the possibility of formation of nitrides and carbonitrides during tempering. The possible effect of nitrogen in these steels may be as a decrease in the size of nitride particles as compared with carbide ones. Increased stability temperature of nitrides and carbonitrides provides increased mechanical and physical properties. In austenitic steels, nitrogen, due to the strong γ-forming equivalence to nickel, replaces it in a ratio of 1  kg of nitrogen  ≈  6  –  39  kg  Ni. In austenitic-martensitic steels, the main role is played by thermal martensite. Stable austenite is obtained in the process of its aging at operating temperatures. Examples of effective use of HNS in important details are described.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here