z-logo
open-access-imgOpen Access
FORMATION OF TEMPERATURE FIELDS AND THERMAL STRESSES ARISING DURING SOLIDIFICATION OF CYLINDRICAL CONTINUOUSLY CAST STEEL BILLETS
Author(s) -
Н. А. Краюшкин,
И. А. Прибытков,
К. С. Шатохин
Publication year - 2019
Publication title -
izvestiâ vysših učebnyh zavedenij. černaâ metallurgiâ
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.3
H-Index - 7
eISSN - 2410-2091
pISSN - 0368-0797
DOI - 10.17073/0368-0797-2019-1-57-61
Subject(s) - continuous casting , materials science , thermal , intensity (physics) , mechanics , boundary value problem , thermal conductivity , water cooling , metallurgy , composite material , thermodynamics , physics , optics , quantum mechanics
The article presents investigation results of the effect of inhomogeneity of boundary conditions on the intensity of metal cooling in the process of continuous casting of cylindrical billets from corrosionresistant steels. It is assumed that the boundary conditions are nonuniform along the billet perimeter. In the longitudinal direction, the cooling intensity is assumed to be constant within the cooled sector of the billet. During the research it was believed that there are flows of thermal energy between the cooling sectors. A comparative analysis of temperature gradients and resulting thermal stresses in the solidified billet at different cooling intensities realized in the secondary cooling zone was carried out The values of thermal stresses are compared with the maximum permissible for each grade of steel in order to find those cooling conditions in which the thermal stresses do not exceed the permissible values. Based on the results obtained, conclusions are drawn about the effect of cooling intensity on the occurrence of external and internal defects in the resulting cylindrical continuous cast billets. The authors have also made the conclusions about the effect of inhomogeneity of the boundary conditions on the formation of temperature fields in a solidified cylindrical continuously cast billet. The results of the conducted studies are presented in a graphic form and their detailed analysis is carried out. To calculate the temperature fields in the solidifying billet, a specially developed mathematical model was used, based on the equation of nonstationary heat conductivity. For the calculation of thermal stresses, known mathematical formulas have been used that allow calculating the values of thermal stresses arising between cooling zones in the solidifying billet during the continuous casting of steel. The obtained data are of high practical importance, since they can be used to develop rational cooling regimes, in which excess permissible thermal stresses will not be observed. This, as a consequence, will reduce the number of internal and external defects arising in the solidifying continuously cast billet.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here