
Experimental study of rheological properties of liquids for hydrofracturing
Author(s) -
Denis Efremov,
I. A. Bannikova,
Yuriy Bayandin,
E. V. Krutikhin,
V. A. Zhuravlev
Publication year - 2020
Publication title -
vestnik permskogo universiteta. seriâ, fizika
Language(s) - English
Resource type - Journals
ISSN - 1994-3598
DOI - 10.17072/1994-3598-2020-4-69-77
Subject(s) - rheometer , viscoelasticity , rheology , materials science , viscometer , shear rate , viscosity , composite material , guar , chemistry , biochemistry
The work is devoted to the study of the rheological behavior of proppant carrier fluids used for hydraulic fracturing (HF) technology in order to increase oil recovery, including from hard-torecover oil and gas reserves, in a wide range of deformation rates using viscometers of various designs. Rheological properties were studied for proppant carrier fluids based on guar and Surfogel grade D, (type 70–100, produced by JSC “Polyex”) with comparable shear rate 128 s–1. Quasistatic experiments to determine the values of the dynamic viscosity of the liquids under study were carried out using a falling ball viscometer (according to the Stokes method). Using an original viscometer, consisting of two coaxial cylinders (rotary rheometer), the dynamic viscosity of surfogel was investigated in a wide range of shear rates. The viscoelastic properties of surfactants were studied using a Physica MCR501 rheometer, which has a plane-to-plane measuring system and allows rheological studies in rotational and oscillatory modes. A comparison of the rheological properties of fluids based on the guar and the viscoelastic surfactant is carried out and it is established that a fluid based on the viscoelastic surfactant has a higher dynamic viscosity and does not lose its elastic properties, which is an certain advantage over a fluid based on the guar.